Digital pathology is in the news again today as it continues to drive diagnostic accuracy and facilitates global collaboration among pathologists, ultimately enhancing patient care and advancing medical research as it allows for the digitization of tissue samples. It does this by making it easier to store, share, and analyse medical data remotely. Additionally, it addresses the challenges of workforce shortages and provides opportunities for implementing artificial intelligence algorithms for more efficient and precise disease detection and classification. ALIO Industries is central to innovation in the digital pathology field providing an array of ultra-precise motion control systems that allow companies to continually innovate in this dynamic field.

Ultra-precise motion control systems are pivotal in digital pathology applications, where nanometer-level accuracy is essential for precise specimen manipulation and high-resolution imaging. This accuracy reduces motion-induced artifacts, resulting in higher-quality images critical for accurate diagnosis. Moreover, ultra-precise motion control systems support automation, streamlining workflows, and improving efficiency in digital pathology labs.

Bill Hennessey, President of ALIO Industries says, “Digital pathology machines demand precise motion control capabilities due to the need for nanometer-level accuracy in specimen scanning and imaging. These systems must precisely position microscope stages and imaging components to ensure that high-resolution images of tissue samples are acquired without motion-induced distortions or artifacts. Any inaccuracies in motion control can compromise the quality of digital slides, potentially leading to misdiagnosis or reduced research validity. Additionally, in automated digital pathology workflows, such as slide loading and sample handling, precise motion control is essential to avoid specimen damage, contamination, or misalignment.”

The integration of artificial intelligence (AI) algorithms in digital pathology applications relies heavily on precise motion control. The systems must accurately navigate the specimen slide to capture multiple fields of view for analysis, ensuring consistent and repeatable image acquisition. To achieve these requirements, motion control systems should provide real-time feedback and correction mechanisms to compensate for any deviations, maintain stability, and enable rapid, high-throughput scanning. In essence, the precise motion control demands of digital pathology machines are paramount in achieving accurate diagnoses, reliable research outcomes, and the successful implementation of AI-driven pathology workflows.

Hennessey continues, “Motion control solutions in digital pathology applications often involve advanced motorized stages equipped with linear encoders or piezoelectric actuators. Linear encoders provide real-time position feedback, ensuring precise specimen and slide movement, while piezoelectric actuators offer extremely fine control for focusing and scanning. Additionally, air-bearing stages are commonly used to minimize friction and vibration, crucial for high-quality imaging. To facilitate automation, motion control solutions in digital pathology may include robotic arms or loaders for sample handling. These robotic systems are designed to handle specimens and slides delicately, minimizing the risk of damage or contamination. Moreover, these solutions often integrate with imaging devices and software for seamless coordination, enabling rapid, efficient scanning, and image acquisition.”

Overall, motion control solutions in digital pathology such as those supplied by ALIO Industries to leading OEMs across the world are engineered to meet the demanding requirements of specimen manipulation and imaging, ensuring precise and consistent results critical for accurate diagnoses and efficient research.

Nano Z® – Dual Voice Coil Stage with Air Bearings

NANO Z® patented Z-lift air bearing stages overcome the legacy design issues associated with z-wedges and other vertical stages. They use a novel combination of air-bearings plus two voice coil motors in a compact footprint with up to 50mm travel.

Using air bearings means negligible friction which enables unparalleled accuracy and repeatability down to low double-digit nanometers. Variable counterbalancing easily handles heavy weights like wafer chucks, while still achieving nano-level precision over the full travel range.

The Nano Z® design places vertical force in line with the payload, and this makes it possible to place the stage directly below the payload instead of beside it, avoiding inevitable cantilever inaccuracies and nearly eliminating pitch, yaw and roll.

Dimensions and specification can be found in following data sheet:

Patented Nano Z®: AI-VC-2400-NANO-Z-AB

GeoSymmetric Voice Coil Z Stages

ALIO’s GeoSymmetric™ Vertical Positioning Stages use voice coil or linear direct drives, high precision crossed roller bearings, and various counterbalance options within a unique and innovative design concept.

Unique geometric shapes provide mounting surfaces on multiple faces of the stage for flexible installation options. Being able to mount the payload directly to the face or top surface of the stage helps to eliminate weakness and resonant frequency issues associated with additional brackets.

The “Symmetric” part of the family’s name originates from the arrangement of the components used. The counterbalance, motor, bearings, and encoder are all placed on an approximate centerline of the stage, i.e. they are integrated in a way that their masses are symmetrically distributed over the stage.

This series of stages has been built for precision with application dependent counterbalances, and has been structurally designed to exceed application performance demands (with bidirectional repeatability down to +/-45nm, travels from 6 to 70mm, and load capacities of up to 30kg). Being 4x to 10x more precise than Z-wedge stages makes ALIO’s GeoSymmetric™ Vertical Positioning Stages  great for any application within the semiconductor industry, microscopes for life and health science, or numerous metrology applications.

Explore our many options with a closer look at the relevant data sheets:

Pneumatic Counterbalanced Z: AI-(MOTOR)-(TRAVEL)00-(FORCE)-Z-CB

High-Force Pneumatic Counterbalanced Z: AI-(MOTOR)-(TRAVEL)00-(FORCE)N-Z-CB

Magnetic Spring Counterbalanced Z, Voice Coil: AI-(MOTOR)-(TRAVEL)00-(PAYLOAD)-Z-MCB-(ORIENTATION)

Mini Z with user-swappable Spring Counterbalanced Z: AI-(MOTOR)-(TRAVEL)00-Z-SCB

Long travel Z Stages with Linear Drives

ALIO’s family of linear motor driven, vertical Z-lift stages are characterized by their low profile and extremely long travel ranges. Using high precision crossed roller bearings and linear encoders, the stages are equipped with magnetic spring counterbalances or a frictionless air bearing pneumatic cylinder. Similar to the GeoSymmetric series of stages, these long travel Z stages have counterbalance, motor, bearings, and encoder all placed on an approximate centerline of the stage. Payloads may be mounted directly to the face of the stage.

The Z-MCB versions with magnetic spring counterbalances allow travel between 25 and 170mm, while the Z-ABCB — with its frictionless air bearing pneumatic cylinder counterbalance — can carry payloads of up to 25kg over 200mm or more.


Magnetic Spring Counterbalanced Z, Linear Drive; AI-LM-(TRAVEL)00-Z-MCB-(MAX PAYLOAD)

Extra Long Travel Z: AI-LM-(TRAVEL)00-(PAYLOAD)-Z-MCB-BASE

Long Travel, High Payload: AI-LM-(TRAVEL)00-Z-ABCB-(OPTION)

High Load and Force Z Stages with Pneumatic Brake

A broad field of applications from industrial automation to large measurement or metrology tools demand enormous lift capabilities while still achieving nanometer precision. For such applications, ALIO offers vertical Z stages with precision ball screws driven by a frameless torque motor that is equipped with pneumatic release spring engage brakes that lift 20kg without additional counterbalance. For even higher loads, this series offers the so-called “pneumatic boost” option which uses a frictionless pneumatic counterbalance to boost the payload capability to 50kg.

Even with such high loads, these stages can achieve +/- 100 nm bi-directional repeatability over ranges of up to 50mm. This makes it the ideal stage for applications requiring high loads and long travel ranges without compromising precision.

More information on precision, accuracy and motion profile specifications:

Z Stage with Pneumatic Brake: AI-BSD-(TRAVEL)00-Z-PBRK

Z Focusing Stage

When looking at most imaging applications, optimal focus of the image can only be achieved if the distance between the sample and the optics is  adjustable. Typically,  a Z-axis focusing stage would be used for such applications with either the sample or the optics being moved along the optical axis. The specifics of the application, the optics, and the sample will ultimately determine the range of motion required, with some examples where additional focus travel is needed being:

• For thick or non-planar samples such as tissue samples or cultured cells

• For non-parfocal objectives each of which have a different focus spacing

• Where there are multiple sample types such as microscope slides or microtiter plates

• When it is necessary to retract the optics during a load/unload operation

Some other advanced microscopy applications require that a series of images are acquired, each separated by a small increment along the Z-axis, such advanced focus control being needed to create 3D sample images.

For all such exacting applications, ALIO’s direct drive focus stage technology is up to the challenge:

Z Focusing Stage: AI-VC-600-SCB-ATRAK

Linear X Stages

ALIO Industries’ linear X stages are the ideal choice for precision applications, as they are commonly used in the precision industry due to their reliability and performance. The family of stages offers a wide range of travel options from 30mm to 300mm by utilizing two types of linear direct drives: the “LM” and the “CM” series.

The “LM” series provides greater force, higher acceleration, greater speed, and supports payloads of up to 50kg, while the “CM” series offers a low-profile design for tools and applications with space constraints, without compromising precision. ALIO’s linear motion systems and linear X stages are the perfect choice for applications that require precision and reliability.

For more information please download and analyze the following datasheets:

ALIO Industries - Linear Motion Systems - Linear X Stages

Linear X: AI-LM-(TRAVEL)00

Low-profile Linear X: AI-CM-(TRAVEL)00

Enclosed Monolithic XY Stages

ALIO Industries offers enclosed, monolithic XY stages that are suitable for ultra-precise applications. These stages feature direct linear drives and high-precision crossed roller bearings built into a compact 3-plate system. With nanometer straightness and flatness, as well as optimized orthogonality, the point precision is True Nano®. Standard travel ranges are from 30mm up to 400mm, and stages can be built for high vacuum or clean room applications if needed.

The bi-directional repeatability of these stages is only +/- 30nm, making them suitable for scanning applications requiring a smooth, continuous movement, or for fast step and settle processes when high output is required. The enclosed, monolithic XY stages are available in two series – the standard LM-series and the low-profile CM-series.

For more information, download the datasheets available on our website.

ALIO Industries - Linear Motion Systems - Enclosed Monolithic XY Stages

To download datasheets, look for:

Enclosed Monolithic XY: AI-LM-(TRAVEL)00-XY

Low-profile Enclosed Monolithic XY: AI-CM-(TRAVEL)00-XY

Open-centered Monolithic XY Stages

ALIO Industries produces open-centered, monolithic XY stages with large apertures for accessibility from all sides. These stages use powerful direct linear drives and high-precision crossed roller bearings in a 3-plate system to achieve outstanding precision. With a bi-directional repeatability of just +/- 50nm, superior straightness and flatness, and optimized orthogonality, ALIO’s open-centered XY stages offer Nano Precision® with travel ranges of 30mm to 400mm. The stages are perfect for scanning applications requiring smooth, continuous movement and fast step and settle processes, and increase throughput substantially. They can be built for high vacuum or clean room applications. ALIO’s open-centered XY stages are available in standard LM-series or the more compact CM-Series. Download datasheets on our website.

ALIO Industries - Linear Motion Systems - Open-Centered Monolithic XY Stages

Open-Centered Monolithic XY: AI-LM-(TRAVEL)00-(THRU)E-XY

Low-profile Open-Centered Monolithic XY: AI-CM-(TRAVEL)00E-(THRU)-XY

Asymmetrical, Monolithic XY Stages

If you need a low-profile solution to avoid space constraints, require different travels in X and Y, and can’t compromise on performance and precision, there are hardly any off-the-shelf products on the market. ALIO’s asymmetrical, monolithic XY stages are unique in the market and can help solve this complex combination of motion requirements.

With linear direct drives, ultra-precise crossed roller bearings, and our 3-plate system, we guarantee highly precise and powerful motion, as well as perfect orthogonality of the X and Y axes in respect to each other.

“Asymmetrical” in this design concept refers to the two different travel ranges of these two stages that are usually achieved by mounting different linear X stages on top of each other.

For further information, contact us or download the following specification sheets:

Asymmetrical, Monolithic XY: AI-LM-(TRAVEL_X)x(TRAVEL_Y)-XY

Asymmetrical, Monolithic XY: AI-SLM-(TRAVEL_X)x(TRAVEL_Y)-XY

ALIO Industries - Linear Motion Systems - Asymmetrical Monolithic XY Stages

Precision Ball-Screw Driven X Stages

ALIO’s precision ball-screw driven X stages are perfect for applications that require precision despite electrical noise. These stages are driven by a torque motor that moves a precision ball screw with an anti-backlash nut, and they can be equipped with pneumatic or electric solenoid brakes if necessary.

Thanks to ALIO’s unique design and manufacturing principles, these stages achieve a bi-directional repeatability of only +/- 100nm, with straightness and flatness well below 5µm (and on request even 1µm can be maintained).

Off-the-shelf versions are available for travels of 30mm, 100mm, 150mm, and 200mm, and can be realized for ambient, high vacuum, and clean room conditions.

For more information on these stages, please refer to the following datasheet:

Linear X with Precision Ball Screw:_AI-VBS-(TRAVEL)00-(BRAKE OPTION)

ALIO Industries - Linear Motion Systems - Precision Ball-Screw Driven X Stages
Micron 2 (µII) motion systems family

ALIO has introduced the Micron 2 (µII) motion systems family to compete in the micron-level motion control market. These systems are designed to offer low-cost, mid-precision, reliable, and long-travel stages. As with all ALIO’s products, the Micron 2 (µII) systems are designed with the company’s “quality first” standards, ensuring long-term reliable operation.

The Micron 2 (µII) recirculating ball rail bearing stages come in standard sizes of 100mm up to 2 meters, making them suitable for a wide variety of applications. This family of motion systems is robust and powerful, designed for use either as a stand-alone unit or as a top axis of an integrated solution.

For more details, visit the dedicated Micron 2 (µII) motion systems page.

ALIO Industries - Linear Motion Systems - Micron 2 Motion Systems