ALIO Industries has just announced the availability of its new AngularesTM Hybrid Hexapod®. The 60-degree tip/tilt travel of the AngularesTM Hybrid Hexapod® is by far the most angular travel range available from any 6-Degree-Of-Freedom (6-DOF) positioner on the market and offers the same unmatched positioning performance found in any of ALIO’s full-line of Hybrid Hexapod systems.

The AngularesTM features precision crossed roller bearing guides, optical incremental or absolute encoder feedback on all axes, linear motor and/or servo ball screw drives, unlimited programmable tool center point locations and coordinate offsets, and zero backlash on all axes. The design makes the AngularesTM capable of unlimited XY travel, Z travel for 62 mm which can be increased to 208 mm using other tripod models, tip/tilt travel of 60 degrees (+/- 30 degrees) with continuous 360 degree Theta-Z, XYZ bidirectional repeatability of less than +/- 0.6 arc-seconds, velocity up to 100 mm/second XY and Z, and less than 10 nanometers linear and 0.1 arc-seconds angular minimum incremental motion.

The Hybrid Hexapod® was developed by ALIO Industries to address the inherent performance limitations of conventional hexapods. ALIO’s Patented 6-DOF design seamlessly blends and takes advantage of the strengths of serial and parallel kinematic structures while avoiding their weaknesses. The Hybrid Hexapod offers far greater functional versatility, nanometer-level accuracy, repeatability, and superior 6-DOF trajectories than is possible with any traditional hexapod or stacked stage configuration.

Standard hexapods satisfactorily service applications where micron motion tolerances are required, but as the demand for nanometer requirements expands, standard hexapods struggle. This is because there are performance limitations inherent in all “conventional” hexapod designs.  They operate within 3-dimensional space, and have errors in all 6 DOF.  However, hexapod motion systems have typically only been characterized by performance data of a single degree of freedom.  This practice leaves error sources unaccounted for in several degrees of freedom, especially in the areas of flatness and straightness, which are critical precision needs at the nanometer-level.  The hexapod’s best flatness and straightness of travel is still no more precise than more than 2 orders of magnitude (2 decimal point less) for basic XY motion.

Because hexapods have six independently controlled links joined together moving a common platform, the motion error of the platform will be a function of the errors of ALL links and joints.  Hexapods are known to have optimum precision when performing Z-axis moves, because all links perform the same motion at the same relative link angle.  However, when any other X, Y, pitch, yaw or roll motion is commanded, precision and geometric path performance of the hexapod degrades substantially because all links are performing different motions.  In the case of conventional hexapods built with non-precision joints, bearings, and motion controllers that are not capable of forward and inverse kinematics equations, the source of error is even more pronounced.

The unique design of the Hybrid Hexapod® is comprised of a parallel kinematic tripod to deliver Z plane and tip/tilt motion. This tripod is integrated with a monolithic serial kinematic stage for XY planar motion. A rotary stage integrated into the top of the tripod (or beneath depending on application needs) provides 360- degree continuous  (Theta-Z) rotation.

In this hybrid design, individual axes can be customized to provide XY travel ranges from millimeters to virtually unlimited ranges while maintaining nanometer-levels of precision. Novel forward and inverse controller kinematics provide an unlimited number of programmable tool center point locations plus unmatched path precision and performance.

The 60 degree tip/tilt travel of the AngularesTM Hybrid Hexapod®, by far the most angular travel range available from any 6-DOF positioner on the market, is perfectly suited for applications including aspheric and freeform optical metrology, silicon photonics packaging and probing, laser micro processing (non-planar substrates and taper control), wafer metrology, camera module alignment and assembly, sensor/image stabilization testing, and optical element and fiber alignment.

To find out more about ALIO’s AngularesTM or its full range of Hybrid Hexapod systems, contact a member of the team today.

The World’s First and Only 6 Degree-of-Freedom Nano-Positioner with +/- 30 Degrees Tip and Tilt Travel

At the recent Photonics West show, San Francisco, CA, USA,  ALIO Industries released the all new HH-30D Hybrid Hexapod® — the industry’s only 6-Degree-Of-Freedom (6-DOF) nano positioning device with +/-30 degrees tip and tilt travel. 

The Hybrid Hexapod® was developed by ALIO Industries to address the inherent performance limitations of conventional hexapods. ALIO’s Patented 6-Degree-Of-Freedom (6-DOF) design seamlessly blends and takes advantage of the strengths of serial and parallel kinematic structures while avoiding their weaknesses.

The Hybrid Hexapod® offers far greater functional versatility, nanometer-level accuracy, repeatability, and superior 6-DOF trajectories than is possible with any traditional hexapod or stacked stage configuration. The unique design is comprised of a parallel kinematic tripod to deliver Z plane and tip/tilt motion. This tripod is integrated with a monolithic serial kinematic stage for XY planar motion. A rotary stage integrated into the top of the tripod (or beneath depending on application needs) provides 360-degree continuous yaw (Theta-Z) rotation. In this hybrid design, individual axes can be customized to provide XY travel ranges from millimeters to virtually unlimited ranges while maintaining nanometer-levels of precision. Novel forward and inverse controller kinematics provide an unlimited number of programmable tool center point (TCP) locations.

The HH-30D’s +/- 30 degree tip/tilt travel is by far the most angular travel range available from any 6-DOF positioner on the market, and offers the same unmatched positioning performance found in any of ALIO’s full-line of Hybrid Hexapod® systems. Such a large travel range is unprecedented, and it must also be appreciated that this angular range is the full conical motion of the device and NOT just the available angles from the primary pitch (Theta-Y) and roll (Theta-X) axes. 

Furthermore — and as is the case on any Hybrid Hexapod® and completely the opposite of any legacy 6-legged Hexapod — this large angular range does not consume any notable XY travel when the TCP is set at the default 0,0,0 location (top center).  Compare this with any alternative traditional hexapod design, and users of the ALIO solution have at least double the amount of tip and tilt range while still having the full XY and Theta-Z travel available.  

The new HH-30D Tripod design leverages ALIO’s experience from the field proven Mini Hybrid Hexapod® by using precision ballscrews driven by frameless servo motors.  What makes this travel possible is an all-new upper joint design that provides the exceptional travel range in an innovative self-nesting package which keeps the profile extremely low and stiffness very high. Future iterations with this innovative joint can easily incorporate ALIO’s linear motor driven / pneumatically counter balanced links.   

The travel range of the tripod is 62mm, which for applications where only a few degrees of tip/tilt are needed would provide a significant amount of remaining pure vertical (Z) travel. Applications that would directly benefit from the large tip/tilt angle include freeform and aspheric optics metrology, taper angle control in laser micro processing, and additive manufacturing. ALIO has also recognized some precision assembly/packaging applications where large offset angles are needed to “reach” into or around complex spaces. 

The HH-30D Tripod can be supplied with virtually any ALIO XY stage to provide a wide range of XY travel options – again, something that is not possible with a standard hexapod.  While any XY stage can be used, the company has currently released models for three configurations including the 60mm XY Ballscrew Driven XY from the Mini Hybrid Hexapod®, the LM100XY Monolithic Stage, and the CM200XY Low Profile Monolithic Stage.  The two latter configurations come with an umbilical cable management system.

The HH-30D with 60mm XY, 62mm Z and unlimited Theta Z starts at $44,900 (€40,000) with controller, which means the unit is comparably priced with industry alternatives but with features and performance they cannot match. The larger (LM) Linear Motor Driven version that was exhibited at the Photonics West show starts at $50,950 (with controller).  With 100mm XY travel range andthe throughput available from linear motor drives this unit essentially has no meaningful competition. 

Market-leading nanometer-level motion control solutions provider, ALIO Industries, caused some waves at the SPIE Photonics West event held in San Francisco at the beginning of February with a display of innovative and unique products.

ALIO showcased several industry-unique precision positioning products and high throughput scanning solutions for laser micro-processing, this year exhibiting alongside recently launched affiliate company 6D Laser LLC.

ALIO is renowned throughout industry for the development of its patented Hybrid Hexapod® and its True Nano® XY positioning stages.

The Hybrid Hexapod® was developed by ALIO to address the critical weaknesses of conventional legacy hexapod designs, as well as the weaknesses of stacked serial stages, and to achieve nanometer -level accuracy, repeatability, and high-integrity flatness and straightness during motion.  It utilizes a tripod parallel kinematics structure to deliver Z plane and tip/tilt motion, integrated with a monolithic serial kinematic structure for XY motion.  A rotary stage integrated into the top of the tripod (or underneath it depending on application needs) provides 360-degree continuous yaw rotation.  In this hybrid design, individual axes can be customized to provide travel ranges from millimeters to over one meter, while maintaining nanometer-levels of precision. 

At Photonics West, ALIO Industries showed live demonstrations of the world’s first and only Hybrid Hexapod® with +/- 30 degrees tip and tilt travel — the new HH-30 Hybrid Hexapod® — which offers more than an order-of-magnitude better precision than alternative hexapod technologies, more travel range in all degrees-of-freedom (DOF) , and significantly higher velocity. The new HH-30 and the world’s most precise compact 6 DOF positioner, the “Mini” Hybrid Hexapod® were front and center at the show, and ALIO was encouraged to see that attendees were increasingly well-informed and recognized that when looking for repeatable nanometer-level precision, ALIO’s solutions are unique.

ALIO’s True Nano® XY positioning stages exhibit unequalled 6-D Nano Precision®. With nanometer-level straightness and flatness, users can be certain that point precision is True Nano®. ALIO’s XY stage family comes with enclosed- or open-center versions from 50-450 mm travel, and standard axis bi-directional repeatability is less than 40 nanometers with optional 10 nanometers bi-directional repeatability for demanding metrology or manufacturing requirements. ALIO uniquely provides its True Nano® XY Stages with NIST traceable data guarnteeing nano precision, not just the marketing data sheet optimism typical with alternative technologies.

At Photonics West, ALIO showcased its new Asymmetric-SeriesTM True Nano® XY positioning stages which represent another unique offering in the industry. When travel ranges for the X and Y axes are not the same, rather than relying on performance-compromising stacked configurations, ALIO’s space-optimizing Asymmetric-Series stages exhibit the same extremely rigid and stable structures that are at the heart of the company’s popular monolithic XY series.

Perhaps one of the key developments from ALIO at Photonics West were technology solutions for precision laser micro-processing, launched under affiliate company 6-D Laser.

6-D Laser has as its central mission to address the limitations of existing laser processing systems which are largely due to sub-optimal positioning systems used by systems integrators. The company tackles this problem by integrating ultra-fast laser material processing with the 6-D nanometer-level precision motion control solutions provided by ALIO Industries through the Hybrid Hexapod®.

6-D Laser has vertically integrated all of the sub-systems required for precision laser micro-processing, and has done this by forming strategic partnerships with key component and subsystem suppliers that are required to achieve the goals of demanding precision applications, including Amplitude Laser, SCANLAB, and ACS Motion Control.

Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.

At Photonics West 6D Laser demonstrations included its Polygon Scanner System, and its Unlimited Field-of-View (FOV) Micromachining System. In respect of the Polygon Scanner Systems, 6D Laser has partnered with Next Scan Technology to provide fully integrated planar laser processing systems that combine ALIO’s precision motion stages with high-throughput polygon scanners. For its Unlimited FOV Micromachining System 6D Laser has partnered with SCANLAB to provide fully integrated XLSCAN systems that combine ALIO’s precision motion stages with ACS’s motion control systems.

Laser micro processing has driven innovation and manufacturing efficiency in various industry sectors. 6-D Laser’s micro-processing solutions win through as they can make ultra-precise micro features, are agnostic to which material is being processed, and are highly repeatable. As such, they are now seen as the go-to solutions compared with traditional non-laser driven micro-processing technologies in the consumer electronics, semi-conductor, medical device, solar cell, and optical sectors.

6-D Laser LLC was formed in 2018 as an affiliate of leading nanometer-level motion control specialist ALIO Industries, with the mission of integrating ultrafast laser processing with precision multi-axis motion systems. 6-D Laser offers Hybrid Hexapod-based laser micromachining systems for wide-range taper angle control, 5-Axis Laser Gimbal-based systems for laser processing 3D substrates, and unlimited field of view scanning solutions for laser processing large-format substrates.

Coming out of stealth mode and coinciding with its official launch in 2020, 6-D Laser has launched its website (www.6dlaser.com), and has also announced that the company will be showcasing its radical new approach to laser micro processing at the SPIE Photonics West event, booth 2149, 4-6 February in San Francisco, CA.

6D Laser’s central mission addresses limitations of existing laser processing systems which are largely due to sub-optimal positioning systems used by most system integrators. 6-D Laser tackles this problem by integrating ultra-fast laser material processing with the 6-D nanometer-level precision motion control solutions in which ALIO Industries specializes.

At the heart of 6-D Laser’s integrated ultrafast laser micromachining system is ALIO Industries’ Hybrid Hexapod®, which takes a different approach to traditional 6 Degree of Freedom (6-DOF) positioning devices, and exhibits much higher performance at extremely competitive prices.  Rather than 6 independent legs (and 12 connection joints) ALIO’s approach combines a precision XY monolithic stage, tripod, and continuous rotation theta-Z axis to provide superior overall performance.

The combination of serial and parallel kinematics at the heart of ALIO’s 6-D Nano Precision® is characterized by orders-of-magnitude improvements (when compared to traditional hexapods) in precision, path performance, speed, and stiffness. The Hybrid Hexapod® also has a larger work envelope than traditional hexapods with virtually unlimited XY travel and fully programmable tool center point locations. The Hybrid Hexapod® has less than 100 nm Point Precision® repeatability, in 3-dimensional space.

​6D Laser vertically integrates all of the sub-systems required for precision laser micro-processing, and it does this by forming strategic partnerships with key component and subsystem suppliers that are required to achieve the goals of demanding precision applications. In addition to its association with ALIO, 6-D Laser has also partnered with SCANLAB GmbH, which together with ACS Motion Control, has developed an unlimited field-of-view (UFOV) scanning solution for coordinate motion control of the galvo scanner and positioning stages called XLSCAN.  6-D Laser has also partnered with NextScanTechnology to provide high-throughput scanning systems that take advantage of the high rep-rates in currently available in ultrafast lasers, and Amplitude Laser, a key supplier of ultrafast laser systems for industrial applications.

Dr. Stephen R. Uhlhorn, CTO at 6-D Laser says, “Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.”

Ultrafast laser ablative processes, which remove material in a layer-by-layer process, result in machined features that have a significant side wall taper. For example, a desired cylindrical hole will have a conical profile.  Taper formation is difficult to avoid in laser micromachining processes that are creating deep features (> 100 microns).  Precision scanheads can create features with near-zero angle side walls, but they are limited to small angles of incidence (AOI) and small field sizes by the optics in the beamline.

Uhlhorn continues, “6-D Laser’s micromachining system controls the AOI and resulting wall taper angle through the Hybrid Hexapod® motion system, and the programmable tool center point allows for the control of the AOI over the entire galvo scan field, enabling the processing of large features.”

At Photonics West, 6-D Laser will be demonstrating a large format, 2D unlimited field of view (UFOV) scanning solution and a high-throughput polygon scanning system. Key members of the team would be delighted to discuss the specifics of your particular applications.

ALIO Industries has spent 2019 working with numerous customers from across industry that are exploiting the ability to innovate through the use of true nanometer-level motion control solutions.

2019 has been a pivotal year for established nanometer-level motion control solution provider ALIO Industries. Throughout the year, news and coverage of ALIO’s Hybrid Hexapod® has reached every corner of industry globally, and the momentum that has been gained has been exciting as ALIO has helped existing and new customers reach new levels of precision in motion control.

Bill Hennessey says, “In many ways, the ultra-precise end of the motion control market is quite a confusing place to be, as the handful of extremely precise motion control suppliers tend to use non-consistent and often illusory ways of describing the levels of precision that they can attain. ALIO has always worked in the area of nanometer-level motion control, and as such has a unique perspective on what really works when looking for this level of precision. Because of this, during 2019, and with the Hybrid Hexapod® very much front and center, we have focussed on educating the customer base to navigate alternative solutions, and give them the tools to interrogate solutions providers in such a way that they can secure a motion control technology suited to their specific applications.”

In the area of hexapods, this has required ALIO Industries to identify where the usefulness of conventional hexapods expires, as it is here that the Hybrid Hexapod® finds its unique niche.

Hexapods are motion control technologies that operate with 6 degrees of freedom (DOF), and the standard hexapods that abound on the market today satisfactorily service applications where micron motion tolerances are required, but as the demand for nanometer requirements expands, standard hexapods struggle somewhat.

This is because there are performance limitations inherent in all “conventional” hexapod designs.  They operate within 3-dimensional space, and have errors in all 6 DOF.  However, hexapod motion systems have typically only been characterized by performance data of a single degree of freedom.  This practice leaves error sources unaccounted for in several degrees of freedom, especially in the areas of flatness and straightness, which are critical precision needs at the nanometer-level.  The hexapod’s best flatness and straightness of travel is still no more precise than in the order of magnitude of tens of microns per axis. 

Because hexapods have six independently controlled links joined together moving a common platform, the motion error of the platform will be a function of the errors of ALL links and joints.  Hexapods are known to have optimum accuracy and repeatability when performing Z-axis moves, because all links perform the same motion at the same relative link angle.  However, when any other X, Y, pitch, yaw or roll motion is commanded, accuracy and geometric path performance of the hexapod degrades substantially because all links are performing different motions.  In the case of legacy hexapods built with non-precision joints and motion controllers that are not capable of forward and inverse kinematics equations, the source of error is even more pronounced.

Furthermore, it is generally accepted that hexapods have relatively good stiffness compared to serial stacked multi-axis systems.  However, it is often only the hexapod’s “Z” (vertical) stiffness that is considered.  Geometric design stiffness has a critical impact on and hexapod’s platform repeatability and rigidity.  A lack of design stiffness relates directly to a weak XY plane stiffness with the conventional hexapod working platform.  Moreover, this inherent design flaw of the conventional hexapod negatively affects XY axis performance, especially with thermal bonding or machining applications that require more force to be performed accurately within the XY plane.

The Hybrid Hexapod® was developed by ALIO to address the critical weaknesses of conventional legacy hexapod designs, as well as the weaknesses of stacked serial stages, and to achieve nanometer -level accuracy, repeatability, and high-integrity flatness and straightness during motion.  It utilizes a tripod parallel kinematics structure to deliver Z plane and tip/tilt motion, integrated with a monolithic serial kinematic structure for XY motion.  A rotary stage integrated into the top of the tripod (or underneath it depending on application needs) provides 360-degree continuous yaw rotation.  In this hybrid design, individual axes can be customized to provide travel ranges from millimeters to over one meter, while maintaining nanometer-levels of precision. 

Hennessey continues, “Engineers working at the cutting edge of what is possible must be stimulated to ask more as they see that this technology reaches places others cannot, has the potential to promote innovations, and can optimise efficiency and cost-effectiveness in manufacture. The Hybrid Hexapod® is orders of magnitude more precise than traditional hexapods, being 100 x stiffer, 30 x faster, and with 10x the usable work envelope of industry standard options.”

ALIO is always eager to discuss how the Hybrid Hexapod® can be used to benefit customer applications, and the company will work to customize specific solutions for particular customer applications.

6-D Laser, LLC (a member of ALIO Industries’ motion control and micromachining family of companies) has developed an integrated ultrafast laser micromachining system that combines high-speed galvo scanning with the novel positioning capabilities of ALIO’s Hybrid Hexapod®.

ALIO’s Hybrid Hexapod® takes a different approach to traditional 6 Degree of Freedom (6-DOF) positioning devices, and exhibits much higher performance at extremely competitive prices.  Rather than 6 independent legs (and 12 connection joints) ALIO’s approach combines a precision XY monolithic stage, tripod, and continuous rotation theta-Z axis to provide superior overall performance.

The combination of serial and parallel kinematics at the heart of ALIO’s 6-D Nano Precision® is characterized by orders-of-magnitude improvements (when compared to traditional hexapods) in precision, path performance, speed, and stiffness The Hybrid Hexapod® also has a larger work envelope than traditional hexapods with virtually unlimited XY travel and fully programmable tool center point locations. The Hybrid Hexapod® has less than 100 nm Point Precision® repeatability, in 3-dimensional space.

Introducing an integrated ultrafast laser micromachining system that combines the positioning capabilities of the Hybrid Hexapod®, with high-speed optical scanning leads to a system that can process hard, transparent materials with wide-range taper angle control for the creation of high aspect ratio features in thick substrates, without limitations on the feature or field size.

Ultrafast laser ablative processes, which remove material in a layer-by-layer process,  result in machined features that have a significant side wall taper. For example, a desired cylindrical hole will have a conical profile.  Taper formation is difficult to avoid in laser micromachining processes that are creating deep features (> 100 microns).  Precision scanheads can create features with near-zero angle side walls, however, they are limited to small angles of incidence (AOI) and small field sizes by the optics in the beamline. 6-D Laser’s micromachining system controls the AOI and resulting wall taper angle through the Hybrid Hexapod® motion system, and the programmable tool center point allows for the control of  the AOI over the entire galvo scan field, enabling the processing of large features.

Industry is driven today by the quest for the smaller parts and components often with sub-micron features, and more accurate, reliable, and repeatable manufacturing processes.

Crucial to many exacting applications requiring nanometer-level accuracy and repeatability are best-in-class motion control solutions.

ALIO is proud to have published this White Paper through the industry leading publication Laser Focus World.https://www.laserfocusworld.com/home/whitepaper/14…

This White Paper reviews the top-end motion control solution available for a broad range of industry applications in terms of accuracy and repeatability (the Hybrid Hexapod®). It also reviews what customers requiring nanometer-level motion control solutions should demand of and look for in their chosen supplier, and analyzes in depth a new methodology which for the first time allows levels of validation of precision hitherto impossible.

This new methodology — Point Precision® — shines a light on the deficiencies inherent in traditional standards for motion control, and also highlights the confusion that some motion control solution suppliers cause by stating resolution credentials that have absolutely nothing to do with precision. 

Industry is driven today by the quest for the smaller parts and components often with sub-micron features, and more accurate, reliable, and repeatable manufacturing processes. Crucial to many exacting applications requiring nanometer-level accuracy and repeatability are best-in-class motion control solutions. This article will look at the top-end solution in terms of accuracy and repeatability, and the applications that benefit from a motion control solution that has achieved quantum-sized improvements in the precision achievable across numerous applications.

Walter Silvesky, Vice President of Sales, ALIO Industries

Discussion of the most precise motion control solutions inevitably leads to a focus on the numerous hexapod options that are available to industry today. However, it is easy for manufacturers to be confused as to the real accuracy and repeatability of these motion control systems through a mixture of supplier hyperbole, and also in truth, a standardization and regulation environment that is not geared up to truly and effectively differentiate between precise, very precise, ultra-precise, and nanometer precise alternatives.

Precision is by its very nature a vague term, it means one thing to one person, one to another, and the lack of “precision” when using the word “precision” allows for at the best unhelpful, and at the worst deceptive claims to be made by motion control solution providers.

This article is written from the perspective that precision means nanometer precision, an accuracy measurement that is only relevant in industrial applications if it is 100% repeatable, not something that can be achieved 20% of the time. It is in the production of nanometer precision and highly repeatable motion control solutions that ALIO has existed since its inception nearly 20 years ago, making it unique in the motion control sector.

The Ultimate in Nanometer-Precise Motion Control

The latest addition to the range of ALIO Industries’ motion control solutions is the patented Hybrid Hexapod®. Traditional hexapod users face numerous restrictions in travel range, speed, and precision – factors that must be optimal to improve production processes and achieve the levels of efficiency and precision demanded by industry today. With the next generation of motion control devices exemplified by the Hybrid Hexapod®, manufacturers can achieve sub-micron and nano-levels of precision and increased accuracy.

Traditional hexapod structures are based purely on parallel motion. A Hybrid Hexapod® achieves its movement through the combination of both parallel and serial kinematic structures. Rather than using six legs to create motion, it uses a traditional X-Y stage, a tripod, and a rotation stage to provide 6 degrees of freedom (6DOF) in the device. The tripod’s parallel kinematic structure delivers Z-plane and tip/tilt motion, which is integrated with a monolithic serial kinematic structure for X- and Y- motion.

This combination removes previous application limitations and positioning errors synonymous with traditional hexapods. With the Hybrid Hexapod®, the precision of serial kinematics combined with the flexibility and compactness of a parallel kinematic device allows users to have all of the strengths of a 6DOF hexapod with none of its critical weaknesses.  This key differentiator of the Hybrid Hexapod® opens the door for using a 6DOF positioner in a wide range of applications not previously considered possible. The Hybrid Hexapod® is therefore a true blue ocean technology, allowing manufacturers to achieve the impossible and stimulating innovation at every level.

The levels of precision and repeatability that characterize the Hybrid Hexapod® are such that existing standards for verifying precision accuracy and repeatability are not adequate. These inadequate existing standards give some motion control solution suppliers the latitude to claim nanometer accuracy, as they were basically designed for a 2D world.

ALIO Industries is working with NIST to improve this situation and give manufacturers confidence in the accuracy and repeatability claims being made. The company is doing this through the development of the measurement standard known as Point Precision®. Point Precision® gives a precision value that considers all 6 possible sources of error, or in other words a true 3D representation. The current standards can only represent precision one dimension at a time and make assumptions in linear repeatability and accuracy that the motion of a stage is straight and flat with all datapoints falling along an ideal line and ignoring the other five possible error sources.  The current standards can measure the pitch, yaw, roll, straightness and flatness but without any consolidation of these error sources it is impossible for a user to get a result from the data where each of these error values is integrated which is where the significance of the Point Precision® becomes obvious.

Applications of the Hybrid Hexapod®

Using Point Precision® to “prove” the absolute precision, accuracy and reliability attainable through use of the Hybrid Hexapod®, opens up a vast array of applications for which it is now seen as the “go-to” motion control solution.

The umbrella under which all these applications sit is a requirement for nanometer-level control repeatably, with many of the applications involved rendered unfit for purpose if such motion control cannot be achieved. Here we will touch upon some of the key areas where manufacturers are using the Hybrid Hexapod®.

In general terms, aerospace users often incorporate the Hybrid Hexapod® in metrology systems. In precision optical elements, the tool can characterize, test, or measure optical components, and optical subassemblies. In precision assembly applications such as in the joining of optical image stabilization (OIS) modules to ultra-high resolution CCD arrays the Hybrid Hexapod® can serve as the motion device that manipulates the OIS module in 6DOF space in the alignment and bonding process.  The high accuracy of the Hybrid Hexapod® decreases assembly time as the OIS can be properly placed into a package without any time-consuming post alignment measurements and re-alignment steps.

Active alignment of 4k lenses. 4K lenses require extraordinarily advanced material technologies, highly sophisticated manufacturing techniques, and precision assembly practices.  Tolerance concerns in all degrees of freedom are paramount. Often the manufacturing techniques used to make the lenses result in positional inaccuracies, and this is where active alignment comes into the picture. The lens and sensor are aligned while projecting multiple targets through the lens and onto the sensor while the sensor is imaging. The active alignment machine continually monitors the modulation transfer function (MTF) at each of the target images until all MTF values are within acceptable limits.  When all MTF values are sound, pre-applied adhesive is partially cured using UV, with complete thermal cure performed later. This allows the sensor to be aligned extremely accurately to the appropriate lens image plane. The absolute precision and repeatability of the Hybrid Hexapod® makes it ideally suited for control in such precision-oriented applications.

Fiber optic alignment. One of the most challenging tasks in photonics assembly is the positioning and alignment of optical fibers and components. Nanometer accuracy, exceptional resolution and extremely high stability are required when coupling laser light with the core of an optical fiber. Manufacturers of such items as lasers, amplifiers, connectors, filters, receivers, switches and other fiber optic components and modules need to minimize the amount of signal loss that occurs across the component-to-component or component-to-fiber junction. If alignment of the optical fiber and component is off just slightly, the product will be rendered useless. With packaging accounting for upwards of 50% of the cost of optical components, that’s something manufacturers simply can’t afford, and because of this, the Hybrid Hexapod® is routinely used to provide nanometer-level motion control for fiber optic alignment applications.

Metrology of optics and other complex shapes. Throughout the world, various types of metrology applications share a common need for increased precision. Markets such as life science, semiconductor, and electronics manufacturing rely on metrology instrumentation to ensure their process is completed correctly. The need for precision is further underscored when you realize the samples/products can be extremely small (i.e. human cell) as well as highly sensitive (i.e. touch-screen electronics). Having high precision, motion technology is key to ensure the application will be completed successfully, and hence the common use of the Hybrid Hexapod® to achieve such levels of required accuracy and repeatability in metrology applications.

Laser ablation processes. Laser ablation works by focusing a laser onto a substrate to remove material that is on its surface. The amount that is removed depends on the intensity, pulse length, and wavelength of the laser, as well as the material itself. Laser ablation has many benefits over more traditional methods which are often costly multi-step processes that are by their very nature time-consuming and inflexible. Laser ablation is a much more efficient, reliable and cost-effective method. Precision laser ablative processes require control of a combination of a number of motion characteristics, and the repeatable nanometer accuracy of the Hybrid Hexapod® coupled with the ability to give customers confidence of motion control in 3D through the use of Point Precision is key. Customers typically use the Hybrid Hexapod® for the laser ablation of silicon and glass. 

Optics beamline assembly. In accelerator physics, a beamline refers to the trajectory of the beam of accelerated particles, including the overall construction of the path segment (guide tubes, diagnostic devices) along a specific path of an accelerator facility. This part is either the line in a linear accelerator along which a beam of particles travels, or the path leading from particle generator to the experimental end-station (as in synchrotron light sources, cyclotrons, or spallation sources). Beamlines usually end in experimental stations that utilize particle beams or synchrotron light obtained from a synchrotron, or neutrons from a spallation source or research reactor. Beamlines are used in experiments in particle physics, materials science, chemistry, and molecular biology, but can also be used for irradiation tests or to produce isotopes. Hybrid Hexapods® are used in such applications where the need for nanometer precision is a must.

Semiconductor inspection and manufacturing. Nanometer positioning and stability is a must in semi-conductor applications , with motion control solutions often needing to be able to operate in clean-room or vacuum manufacturing environments. Nanometer motion control is required from the get go in any semi-conductor application, even being used to perform a number of necessary processes on the base raw material for all semi-conductor wafers (silicon) onto which integrated circuits are embedded. Silicon for semi-conductor applications must be free of any defects , and must then be modified, patterned, and coated to provide the complex final chips. All this requires hugely accurate and repeatable motion control, and with the demand always being for better, smaller, and stronger products year on year, it is obvious why the Hybrid Hexapod® is used in the semi-conductor industry to ensure exacting motion control requirements.

Smart phone and small part assembly. For a product to be assembled successfully, it’s essential to move the right parts, to the right place, in the right orientation, at the right time. Motion control technology makes that happen.  Populating circuit boards for smart phones and tablets, for example, places special demands when it comes to accuracy and speed, and demands the use of nanometer precision motion control solutions such as the Hybrid Hexapod®.

Precision CNC machining. The key advantage of using the Hybrid Hexapod® for any precision CNC machining operation is that it depends on mathematical algorithms not the mechanical relationship between components for accuracy and repeatability. The Hybrid Hexapod® allows CNC spindles to be driven almost in freeform fashion, allowing the manufacture of parts with geometric complexity impossible on conventional machining equipment. Tools can be directed in any plane required and with a huge reduction in the need to move the actual part being machined. With the hexapod, the tool never needs to leave the part being machined which also promotes better surface finish. The Hybrid Hexapod® is the most rigid and accurate hexapod on the market today, and while standard hexapods claim accuracy in the micron area, the Hybrid Hexapod® boasts nanometer repeatable precision for precision CNC machining applications.

MEMS assembly. Sophisticated motion control technologies such as the Hybrid Hexapod® enable MEMs manufacturers to make devices previously deemed impossible. Motion control and assembly issues are a barrier to MEMS development, and are overcome by the Hybrid Hexapod®. With its 6DOF, the Hybrid Hexapod® is able to perform important manufacturing and testing operations in MEMs fabrication, and is a spur to innovation and new MEMs product development.

Summary

The ability to control motion with nanometer repeatability elevates motion control to an enabling technology that stimulates innovation and new product development. ALIO exists in this environment and, through nanometer performing solutions such as the Hybrid Hexapod®, is finding uses at the cutting edge of numerous applications across various industry sectors.

Copyright 2021 ALIO Industries | Website by SmartaStudio